超临界流体乙烯_超临界流体用途


超临界流体的特点

超临界流体的特点如下:

超临界流体乙烯_超临界流体用途超临界流体乙烯_超临界流体用途


超临界流体乙烯_超临界流体用途


1、超临界流体的溶解能力取决于它的温度和压力,通常和流体的密度呈正相关,随流体的密度增加而增加。

2、在临界点附近,压力、温度的微小变化会引起流体密度及其对物质溶解能力的较为显著的变化。

3、被用作超临界流体的溶剂有乙烷、乙烯、丙烷、丙烯、甲醇、乙醇、水、二氧化碳等多种物质,超临界二氧化碳是的萃取剂。因二氧化碳的临界条件易达到(Tc=304.1 K,Pc=7.347 MPa),且无毒、无味、不燃、价廉、易精制,这些特性对热敏性和易氧化的产物更具有吸引力。

4、无毒性、不燃性和无腐蚀性。超临界二氧化碳流体无毒和不可燃,有利于安全生产,而且来源丰富,价格低廉有利于推广应用,降低成本。

5、容易达到超临界条件。二氧化碳临界温度为Tc=31.1℃ ,临界压力为Pc=7.3MPa,二氧化碳的超临界条件与水相比(水的临界温度为374℃,临界压力为22MPa)更容易达到。

6、超临界流体,又称为稠密气体或高压气体,它不同于一般的气体,也有别于一般液体,兼有液体和气体的双重特性,密度接近于液体,粘度和扩散系数接近于气体,渗透性好,与液体溶剂萃取相比,可以更快地完成传导,达到平衡,促进高效分离过程的实现。

乙烯的临界温度和临界压力是多少

临界压力是5.04MPa,临界温度是9.2摄氏度。

物质处于临界状态时的压力(压强)。就是在临界温度时使气体液化所需要的最小压力。也就是液体在临界温度时的饱和蒸气压。在临界温度和临界压力下,物质的摩尔体积称为临界摩尔体积。临界温度和临界压力下的状态称为临界状态。

液体能维持液相的温度叫临界温度。临界温度,使物质由气态变为液态的温度叫临界温度。每种物质都有一个特定的温度,在这个温度以上,无论怎样增大压强,气态物质都不会液化,这个温度就是临界温度。

每种物质都有一个特定的温度,在这个温度以上,无论怎样增大压强,气态物质不会液化,这个温度就是临界温度。因此要使物质液化,首先要设法达到它自身的临界温度。有些物质如氨、二氧化碳等,它们的临界温度高于或接近室温,对这样的物质在常温下很容易压缩成液体。有些物质如氧、氮、氢、氦等的临界温度很低,其中氦气的临界温度为一268℃。要使这些气体液化,必须相应的要有一定的低温技术,以使能达到它们各自的临界温度,然后再用增大压强的方法使它液化。

通常把在临界温度以上的气态物质叫做气体,把在临界温度以下的气态物质叫做汽。 临界温度物质处于临界状态时的温度,称为“临界温度”。降温加压,是使气体液化的条件。但只加压,不一定能使气体液化,应视当时气体是否在临界温度以下。如果气体温度超过临界温度,无论怎样增大压强,气态物质也不会液化。例如,水蒸汽的临界温度为374℃,远比常温度要高,因此,平常水蒸汽极易冷却成水。其他如、氨、二氧化碳等,它们的临界温度略高于或接近室温,这样的物质在常温下很容易被压缩成液体。但也有一些临界温度很低的物质,如氧、空气、氢、氦等都是极不容易液化的气体。其中氦的临界温度为-268℃。要使这些气体液化。必须具备一定的低温技术和设备,使它们达到它们各自的临界温度以下,而后再用增大压强的方法使其液化。

常用的超临界流体有哪些

常用的超临界流体有:二氧化碳、乙烯、乙烷、丙烷、等。

超临界流体是温度、压力高于其临界状态的流体,通常把处于温度超过临界温度而不论其压力和密度是否超过临界值状态的流体都归之为超临界流体。超临界流体具有许多独特的性质,如粘度小、密度、扩散系数、溶剂化能力等性质随温度和压力变化十分敏感:粘度和扩散系数接近气体,而密度和溶剂化能力接近液体。

超临界CO2溶剂的介绍

随着环境的温度和压力变化,任何一种物质都存在三种相态-气相,液相,固相,三相成平衡态共存的点叫三相点.液,气两相相界面消失的状态点叫超临界点.在临界点时的温度和压力称为临界温度和临界压力,不同的物质其临界点的压力和温度各不相同。超临界流体(Super Critical fluid,简称SCF)是指温度和压力均高于其临界点的流体,常用来制备成的超临界流体有二氧化碳,氨,乙烯,丙烷,丙烯,水等。物体处于超临界状态时,由于气液两相性质非常相近,以致无法清楚分别,所以称之为「超临界流体」

什么是超临界液体技术

超临界流体定义

任何一种物质都存在三种相态-气相、液相、固相。三相成平衡态共存的点叫三相点。液、气两相成平衡状态的点叫临界点。在临界点时的温度和压力称为临界压力。不同的物质其临界点所要求的压力和温度各不相同。

超临界流体(Supercritical fluid,SCF)技术中的SCF是指温度和压力均高于临界点的流体,如二氧化碳、氨、乙烯、丙烷、丙烯、水等。高于临界温度和临界压力而接近临界点的状态称为超临界状态。处于超临界状态时,气液两相性质非常相近,以至无法分别,所以称之为SCF。

目前研究较多的超临界流体是二氧化碳,因其具有无毒、不燃烧、对大部分物质不反应、价廉等优点,最为常用。在超临界状态下,CO2流体兼有气液两相的双重特点,既具有与气体相当的高扩散系数和低粘度,又具有与液体相近的密度和物质良好的溶解能力。其密度对温度和压力变化十分敏感,且与溶解能力在一定压力范围内成比例,所以可通过控制温度和压力改变物质的溶解度。

什么是纯物质的临界点,说出超临界流体的两个应用范围

超临界流体(SCF)的特性超临界流体(SCF)是指物体处于其临界温度(Tc)和临界压力(Pc)以上状态时,向该状态气体加压,气体不会液化,只是密度增大,具有类似液体的性质,同时还保留气体的性能。超临界流体兼具气体和液体的优点,其密度接近于液体,溶解能力较强,而黏度与气体相近,扩散系数远大于一般的液体,有利于传质。另外,超临界流体具有零表面张力,很容易渗透扩散到被萃取物的微孔内。因此,超临界流体具有良好的溶解和传质特性,能与萃取物很快地达到传质平衡,实现物质的有效分离。超临界流体萃取分离的原理超临界流体萃取分离过程是利用其溶解能力与密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。在超临界状态下,流体与待分离的物质接触,使其有选择性地依次把极性大小、沸点高低和分子质量大小的不同成分萃取出来。然后借助减压、升温的方法使超临界流体变成普通气体,被萃取物质则自动完全或基本析出,从而达到分离提纯的目的,并将萃取分离的两个过程合为一体。超临界流体萃取的溶剂超临界流体萃取过程能否有效地分离产物或除去杂质,关键是萃取中使用的溶剂必须具有良好的选择性。目前研究的超临界流体种类很多,主要有二氧化碳、水、甲苯、甲醇、乙烯、乙烷、丙烷、丙酮和氨等。近年来主要还是以使用二氧化碳超临界流体居多,因为二氧化碳的临界状态易达到,它的临界温度(Tc=30.98℃)接近室温,临界压力(Pc=7.377MPa)也不高,具有很好的扩散性能,较低的表面张力,且无毒、无味、不易燃、价廉、易精制等特点,这些特性对热敏性易氧化的天然产品更具吸引力超临界流体萃取主要特点超临界流体技术在萃取和精馏过程中,作为常规分离方法的替代,有许多潜在的应用前景。其优势特点是:(1)使用SFE是最干净的提取方法,由于全过程不用,因此萃取物残留的溶剂物质,从而防止了提取过程中对人体有害物的存在和对环境的污染,保证了的性;(2)萃取和分离合二为一,当饱和的溶解物的CO2流体进入分离器时,由于压力的下降或温度的变化,使得CO2与萃取物迅速成为两相(气液分离)而立即分开,不仅萃取的效率高而且能耗较少,提高了生产效率也降低了费用成本;(3)超临界萃取可以在接近室温(35~40℃)及CO2气体笼罩下进行提取,有效地防止了热敏性物质的氧化和逸散。(4)CO2是一种不活泼的气体,萃取过程中不发生化学反应,且属于不燃性气体,无味、无臭、无毒、安全性非常好;(5)CO2气体价格便宜,纯度高,容易制取,且在生产中可以重复循环使用,从而有效地降低了成本;(6)压力和温度都可以成为调节萃取过程的参数,通过改变温度和压力达到萃取的目的,压力固定通过改变温度也同样可以将物质分离开来;反之,将温度固定,通过降低压力使萃取物分离,因此工艺简单容易掌握,而且萃取的速度快。超临界流体萃取过程的主要影响因素(1)萃取压力的影响萃取压力是SFE最重要的参数之一,萃取温度一定时,压力增大,流体密度增大,溶剂强度增强,溶剂的溶解度就增大。对于不同的物质,其萃取压力有很大的不同。(2)萃取温度的影响温度对超临界流体溶解能力影响比较复杂,在一定压力下,升高温度被萃取物挥发性增加,这样就增加了被萃取物在超临界气相中的浓度,从而使萃取量增大;但另一方面,温度升高,超临界流体密度降低,从而使化学组分溶解度减小,导致萃取数减少。因此,在选择萃取温度时要综合这两个因素考虑。(3)萃取粒度的影响粒度大小可影响提取回收率,减小样品粒度,可增加固体与溶剂的接触面积,从而使萃取速度提高。不过,粒度如过小、过细,不仅会堵塞筛孔,造成萃取器出口过滤网的堵塞。(4)CO2流量的影响CO2的流量的变化对超临界萃取有两个方面的影响。CO2的流量太大,会造成萃取器内CO2流速增加,CO2停留时间缩短,与被萃取物接触时间减少,不利于萃取率的提高。但另一方面,CO2的流量增加,可增大萃取过程的传质推动力,相应地增大传质系数,使传质速率加快,从而提高SFE的萃取能力。因此,合理选择CO2的流量在SFE中也相当重要。超临界流体萃取的过程是由萃取和分离2个阶段组合而成的。根据分离方法的不同,可以把超临界萃取流程分为:等温法、等压法和吸附法,如图2所示。3.1等温变压萃取流程等温条件下,萃取相减压,膨胀,溶质分离,溶剂CO2经压缩机加压后再回到萃取槽,溶质经分离器分离从底部取出。如此循环,从而得到被分离的萃取物。该过程易于作,应用较为广泛,但能耗高一些。3.2等压变温萃取流程等压条件下,萃取相加热升温,溶质分离,溶剂CO2经冷却后回到萃取槽。过程只需用循环泵作即可,压缩功率较少,但需要使用加热蒸汽和冷却水。3.3吸附萃取流程萃取相中的溶质由分离槽中的吸附剂吸附,溶剂CO2再回到萃取槽中。吸附萃取流程适用于萃取除去杂质的情况,萃取器中留下的剩余物则为提纯产品。其中,前两种流程主要用于萃取相中的溶质为需要的精制产品,第三种流程则常用于萃取产物中杂质或有害成分的去除。超临界流体具有许多不同于一般液体溶剂的物理化学特性,基于超临界流体的萃取技术具有传统萃取技术无法比拟的优势,近年来,超临界流体萃取技术的研究和应用从基础数据、工艺流程到实验设备等方面均有较快的发展。但由于对超临界流体本身尚缺乏透彻的认识,对其化学反应、传质理论以及反应中热力学的本质问题研究有待深入,而且超临界流体萃取分离技术需要高压装置,因而对工艺设备的要求往往也比较高,需要有较大的投入等原因的客观存在,因此目前超临界流体的大规模实际应用还存在诸多问题需要进一步解决。目前上超临界流体萃取与造粒技术的研究和应用正方兴未艾,技术发展应用范围包括了:萃取(extraction),分离(separation),清洗(cleaning),包覆(coating),浸透(impregnation),颗粒形成(particleformation)与反应(reaction)。德国,日本和美国已处于领先地位,在,化工,食品,轻工,环保等方面研究成果不断问世,工业化的大型超临界流体设备有5000L~10000L的规模,日本已成功研制出超临界色谱分析仪,而亦有五王粮食公司运用超临界二氧化碳萃取技术进行食米农残留及重金属的萃取与去除。目前上超临界流体萃取的研究重点已有所转移,为得到纯度较高的高附加值产品,对超临界流体逆流萃取和分馏萃取的研究越来越多。超临界条件下的反应的研究成为重点,特别是超临界水和超临界二氧化碳条件下的各类反应,更为人们所重视.超临界流体技术应用的领域更为广泛,除了天然产物的提取,有机合成外还有环境保护,材料加工,油漆印染,生物技术和医学等;有关超临界流体技术的基础理论研究得到加强,上的这些动向值得我们关注。由于超临界二氧化碳萃取技术在萃取后能将二氧化碳再次利用,把对环境的污染降至,所以未来传统工业若是能以超临界二氧化碳当作主要溶剂,那现在我们这颗的地球,便能得到舒缓。21世纪的化学工业,工业等必须通过调整自身的产业结构和产品结构,研究开发清洁化生产和绿色工业的新工艺和新技术。超临界流体技术就是近30年来迅速发展起来的这样一种新技术.我们应当从这个战略高度来认识超临界流体技术研究和推广应用的重要性,制定研究规划,加大投入,加强对该技术的基础和应用研究,使它真正用于工业化生产,造福于人类,造福于。

磁体两端磁性最强(磁体两端磁性最强的区域称为磁场)
上一篇
英雄联盟比赛地点西安赛区_英雄联盟比赛
下一篇
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 836084111@qq.com ,一经查实,本站将立刻删除。

相关推荐