磁性材料的分类 磁性材料的分类及特点


什么是磁铁

铁磁材料具有很强的被磁化特性,它们集电环在外磁场的作用下,能产生远大于外磁场的附加磁场。只有铁心的线圈,其磁场远比无铁心线圈的磁场强,所以电机、电器等设备都要采用铁心。这碳刷样就可以用较小的电流来产生较强约磁场,使线圈的体积、重量都大为减小。

成分是铁、钴、镍等原子的内部结构比较特殊,其原子本身就具有磁矩。一般情况下,这些矿物分子的排列较混乱。而它们的磁区互相影响并显示不出磁性来,但是在外力(如磁场)导引下其分子的排列方向就会趋向一致,其磁性就会明显的显示出来,也就是我们平时俗称的磁铁。磁铁分磁铁与软铁,磁铁是加上强磁,使磁性物质的自旋与电子角动量成固定方向排列,软磁则是加上电流(也是一种加上磁力的方法) 等电流去掉软铁会慢慢失去磁性。最早发现及使用磁铁的应该是人,“指南针”是四大发明之一。

磁性材料的分类 磁性材料的分类及特点磁性材料的分类 磁性材料的分类及特点


磁性材料的分类 磁性材料的分类及特点


磁性材料的分类 磁性材料的分类及特点


目录磁铁(magnet)是可以产生磁场的物体,为一磁偶极子,能够吸引铁磁性物质如铁、镍、钴等金属。磁极的判定是以细线悬挂一磁铁,指向北方的磁极称为指北极或N极,指向南方的磁极为指南极或S极。(如果将地球想成一大磁铁,则目前地球的地磁北极是S极,地磁南极则是N极。)磁铁异极则相吸,同极则排斥。指南极与指北极相吸,指南极与指南极相斥,指北极与指北极相斥。

磁铁可分作“磁铁”与“非磁铁”。磁铁可以是天然产物,又称天然磁石,也可以由人工制造(最强的磁铁是钕磁铁)。而非性磁铁,只有在某些条件下会有磁性,通常是以电磁铁的形式产生,也就是利用电流来强化其磁场。

磁石与磁铁的转化

未磁化的磁石内部磁分子(分子磁铁学说)是无规则排列的,经过磁化的过程后磁分子会有规则的排列。此时,磁分子的N极和S极会朝向相同方向使磁石具有磁性而成为磁铁。同时,同一磁铁上存在相反两极且两极之磁量相等。

主要成分

磁铁又名吸铁石,是指在周围和自身内部存在磁场的物体或材质,分为天然和人造两大类。人造磁铁通常用金属合金制成,具有强磁性。又可分作“性磁铁”与“非性磁铁”,即“硬磁”与“软磁”。天然磁铁主要成分:四氧化三铁,化学式Fe3O4,常称“磁性氧化铁”。具有磁性的黑色晶体。可以看成是氧化亚铁和氧化铁组成的化合物。因在四氧化三铁的晶体里存在着两种不同价态的离子,其中三分之一是Fe2+,三分之二是Fe3+,是一种复杂的化合物。它不溶于水,也不能与水反应。与酸反应,不溶于碱。主要用于制底漆和面漆,用于电子工业的磁性材料,也用于建筑工业的防锈剂。

性磁铁可以是天然产物,又称天然磁石,也可以由人工制造(最强的磁铁是钕铁硼磁铁)。

磁铁图集(17张)非性磁铁

:非性磁铁加热到一定的温度会突然失去磁性,这是由于组成磁铁的众多“元磁体”之排列从有序到无序所引起的;失去磁性的磁铁放入到磁场中,当磁化强度达到某一数值,它又被磁化,“元磁体”之排列又从无序到有序。

人造磁铁

人造磁铁:分为蹄形磁铁和条形磁铁,是大家生活中最常见的,其中蹄形磁铁比较受欢迎。单面磁铁 是指一面有磁性,另一面磁性较弱的磁铁,方法是用特殊处理的镀锌铁皮将双面磁铁的一面包 裹,这样被包裹的一面磁性将被屏蔽,磁力被折射到另一面,另一面磁性将增强。如有的场合只需要一面有磁性,另一面如有磁性会造成损坏或干扰;有的场合如包装盒上的磁铁则只需要一面有磁性,另一面可有可 无,有磁性也没有用,这样使用单面磁会大大降低成本并节约磁性材料。单面磁铁的磁力折射如同卫星锅对信号的折射或手电筒灯锅对光线的折射,其折射效果主要由以下三方 面决定:1.材料:材料的选择以及厚薄,以及磁铁与材料的间距有着密切的关系。纯铁皮容易漏磁,经特殊处理后折射会增强,但屏蔽的材料还没研究出,但不同 厂 家做的材料效果也不同。 2.角度:根据折射原理,弧形材料效果,直角材料折射损耗较大。 3.空间:磁力线在空中如同手机信号,需要有空间才能折。手电筒灯锅如完全包裹在灯炮上,使用效果肯定不好,因为有大量的光线折射被损耗。 如何能利用以上原理,将磁性增强的效果,是很多参数之间求的问题,很多厂家也在反复的做实验,如西安国泰磁铁厂单面磁处理最理想结果为增强50%,这样在包装盒箱包等领域将大大降低生产成本并节约磁性材料。

反磁性

顺磁性

顺磁性,是指一种材料的磁性状态。有些材料可以受到外部磁场的影响,产生指同相向的磁化向量的特性。这样的物质具有正的磁化率。与顺磁性相反的现象被称为抗磁性。

铁磁电磁屏蔽材料的选用和设计要点性

铁磁性,是指一种材料的磁性状态,具有自发性的磁化现象。各材料中以铁最广为人知,故名之。 某些材料在外部磁场的作用下得而磁化后,即使外部磁场消失,依然能保持其磁化的状态而具有磁性,即所谓自发性的磁化现象。所有的磁铁均具有铁磁性或亚铁磁性。 基本上铁磁性这个概念包括任何在没有外部磁场时显示磁性的物质。至今依然有人这样使用这个概念。但是通过对不同显示磁性物质及其磁性的更深刻认识,学者们对这个概念做了更的定义。一个物质的原胞中所有的磁性离子均指向它的磁性方向时才被称为是铁磁性的。若只有部分离子的磁场指向其磁性方向,则称为亚铁磁性。若其磁性离子所指的方向正好相互抵消(尽管所有的磁性离子只指向两个正好相反的方向)则被称为反铁磁性。 物质的磁性现象存在一个临界温度,在此温度下才会发生。对于铁磁性和亚铁磁性物质,此温度被称为居里温度; 对于反铁磁性物质,此温度被称为尼尔温度。 有人认为磁铁与铁磁性物质之间的吸引作用是人类最早对磁性的认识。

电磁性

电磁铁是可以以通电流来产生磁力的装置,在电力普及的中是一项不可缺少的工具,属非磁铁,与磁铁同为磁铁的一种。

超导体电磁铁

超导磁铁是由超导材料制成的超导线圈构成的人工磁铁。

超导材料,又称为超导体(superconductor)。当某导体在一温度下,可使电阻为零而称之。零电阻和抗磁性是超导体的两个重要特性。使超导体电阻为零的温度,叫超导临界温度。

钕磁铁

该由4780313贡献

[1][2](Neodymium magnet)也称为钕铁硼磁铁,其化学式为Nd2Fe14B,是一种人造的磁铁,目前为止具有最强磁力的磁铁。 被人们称为磁王,拥有极高的磁性能其磁能积(BHmax)高过铁氧体(Ferrite)10倍以上。其本身的机械加工性能亦相当之好。工作温度可达200摄氏度。而且其质地坚硬,性能稳定,有很好的性价比,故其应用极其广泛。但因为其化学活性很强,所以必须对其表面凃层处理。(如镀Zn,Ni,电泳、钝化等)。 钕磁铁是住友特殊金属公司的佐川真人等人于1982年发明的,由其化学式可知其主要由钕、铁与硼等化学元素所构成。在许多领域有可能取代传统的纯铁磁铁, 铝镍钴合金和钐钴磁铁譬如电动机, 仪器和仪表,汽车工业, 石油化工产业和磁性医疗保健产品。能生产各种形状的:譬如圆盘磁铁,圆环磁铁, 长方形磁铁, 弧磁铁和其它形状的磁铁。 具有强力磁性的钕磁铁被广泛被应用在电子产品上,例如硬盘、手机、耳机等等。

磁性材料名词解释

和Hc都大,经饱和磁化后,储存的磁场能量大。常用作发电机、电动机的永磁磁极和测量仪表、扬声器中的永磁体等。

篇一:磁性材料名词解释

磁性材料

Jump to: , 磁性材料

magnetic material

可由磁场感生或改变磁化强度的物质。按照磁性的强弱,物质可以分为抗磁性、顺磁性、铁磁性、反铁磁性和亚铁磁性等几类。铁磁性和亚铁磁性物质为强磁性物质,其余为弱磁性物质。现代工程上实用的磁性材料多属强磁性物质,通常所说的磁性材料即指强磁性材料。

磁性材料的用途广泛。主要是利用其各种磁特性和特殊效应制成元件或器件;用于存储、传输和转换电磁能量与信息,或在特定空间产生一定强度和分布的磁场;有时也以材料的自然形态而直接利用(如磁性液体)。磁性材料在电子技术领域和其他科学技术领域中都有重要的作用。

简史 是世界上发现物质磁性现象和应用磁性材料的。早在战国时期就有关于天然磁性材料(如磁铁矿)的记载。11世纪就发明了制造人工永磁材料的方 法。1086年《梦溪笔谈》记载了指南针的制作和使用。1099~1102年有指南针用于航海的记述,同时还发现了地磁偏角的现象。 近代,电力工业的发展促进了金属磁性材料──硅钢片(Si-Fe合金)的研制。永磁金属从 19世纪的碳钢发展到后来的稀土永磁合金,性能提高二百多倍。随着通信技术的发展,软磁金属材料从片状改为丝状再改为粉状,仍满足不了频率扩展的要求。 20世纪40年代,荷兰J.L.斯诺伊克发明电阻率高、高频特性好的铁氧体软磁材料,接着又出现了价格低廉的永磁铁氧体。50年代初,随着电子计算机的发 展,美籍华人王安首先使用矩磁合金元件作为计算机的内存储器,不久被矩磁铁氧体记忆磁芯取代,后者在60~70年代曾对计算机的发展起过重要的作用。50 年代初人们发现铁氧体具有独特的微波特性,制成一系列微波铁氧体器件。压磁材料在次世界大战时即已用于声纳技术,但由于压电陶瓷的出现,使用有所减少。后来又出现了强压磁性的稀土

1 / 17

合金。非晶态(无定形)磁性材料是近代磁学研究的成果,在发明快速淬火技术后,1967年解决了制带工艺,正向实用化过渡。

分类 磁性材料按磁性功能分,有永磁、软磁,矩磁、旋磁和压磁材料;按化学成分分,有金属磁和铁氧体;按结构分,有单晶、多晶和非晶磁体;按形态分,有磁性薄膜、塑性磁体、磁性液体和磁性块体。磁性材料通常是按功能分类的。

永磁材料 一经外磁场磁化以后,即使在相当大的反向磁场作用下,仍能保持一部或大部原磁化方向的磁性。对这类材料的要求是剩余磁感应强度Br高,矫顽力BHC(即抗退磁能力)强,磁能积(BH)max (即给空间提供的磁场能量)大。相对于软磁材料而言,它亦称为硬磁材料。

永磁材料有合金、铁氧体和金属间化合物三类。①合金类:包括铸造、烧结和可加工合金。铸造合金的主要品种有:AlNi(Co)、 FeCr(Co)、FeCrMo、FeAlC、FeCo(V)(W);烧结合金有:Re-Co(Re代表稀土元素)、Re-Fe以及AlNi(Co)、 FeCrCo等;可加工合金有:FeCrCo、PtCo、MnAlC、CuNiFe和AlMnAg等,后两种中BHC较低者亦称半永磁材料。②铁氧体类: 主要成分为MO·6Fe2O3,M代表Ba、Sr、Pb或SrCa、LaCa等复合组分。③金属间化合物类:主要以MnBi为代表。

永磁材料有多种用途。①基于电磁力作用原理的应用主要有:扬声器、话筒、电表、按键、电机、继电器、传感器、开关等。②基于磁电作用原理的应用主要有:磁控管和行波管等微波电子管、显像管、钛泵、微波铁氧体器件、磁阻器件、霍尔器件等。③基于磁力作用原理的应用主要有:磁轴承、选矿机、磁力分离器、磁性吸盘、磁密封、磁黑板、玩具、标牌、密码锁、复印机、控温计等。其他方面的应用还有:磁疗、磁化水、磁麻醉等。

根据使用的需要,永磁材料可有不同的结构和形态。有些材料还有各向同性和各向异性之别。

软磁材料 它的功能主要是导磁、电磁能量的转换与传输。因此,对这类材料要求有较高的磁导率和磁感应强度,同时磁滞回线的面积或磁损耗要小。与永磁材料相反,其Br和BHC越小越好,但饱和磁感应强度Bs则越大越好。 软磁材料大体上可分为四类。①合金薄带或薄片:FeNi(Mo)、FeSi、FeAl等。②非晶态合金薄带:Fe基、Co基、FeNi基或FeNiCo基等配以适当的Si、B、P和其他掺杂元素,又称磁性玻璃。③磁介质(铁粉芯):FeNi(Mo)、FeSiAl、和铁氧体等粉料,经电绝缘介质包覆和粘合后按要求压制成形。④铁氧

体:包括尖晶石型──M++ O·Fe (M++

2O3 代表NiZn、MnZn、MgZn、Li1/2Fe1/2Zn、CaZn等),磁铅石型──Ba3Me2Fe24O41(Me代表Co、Ni、Mg、Zn、Cu及其复合组分)。

软磁材料的应用甚广,主要用于磁性天线、电感器、变压器、磁头、耳机、继电器、振动子、电视偏转轭、电缆、延迟线、传感器、微波吸收材料、电磁铁、加速器高频加速腔、磁场探头、磁性基片、磁场屏蔽、高频淬火聚能、电磁吸盘、磁敏元件(如磁热材料作开关)等。

矩磁材料和磁记录材料 主要用作信息记录、无接点开关、逻辑作和信息放大。这种材料的特点是磁滞回线呈矩形。

旋磁材料 具有独特的微波磁性,如导磁率的张量特性、法拉第旋转、共振吸收、场移、相移、双折射和自旋波等效应。据此设计的器件主要用作微波能量的传输和转换,常 用的有隔离器、环行器、滤波器(固定式或电调式)、衰减器、相移器、调制器、开关、限幅器及延迟线等,还有尚在发展中的磁表面波和静磁波器件(见微波铁氧

体器件)。常用的材料已形成系列,有Ni系、Mg系、Li系、YlG系和BiCaV系等铁氧体材料;并可按器件的需要制成单晶、多晶、非晶或薄膜等不同的 结构和形态。

压磁材料 这类材料的特点是在外加磁场作用下会发生机械形变,故又称磁致伸缩材料,它的功能是作磁声或磁力能量的转换。常用于发生器的振动头、通信机的机械 滤波器和电脉冲信号延迟线等,与微波技术结合则可制作微声(或旋声)器件。由于合金材料的机械强度高,抗振而不炸裂,故振动头多用Ni系和NiCo系合 金;在小信号下使用则多用Ni系和NiCo系铁

2 / 17

氧体。非晶态合金中新出现的有较强压磁性的品种,适宜于制作延迟线。压磁材料的生产和应用远不及前面四种材 料。 展望 磁电共存这一基本规律导致了磁性材料必然与电子技术相互促进而发展,例如光电子技术促进了光磁材料和磁光材料的研制。磁性半导体材料和磁敏材料和器件可 以应用于遥感、遥则技术和机器人。人们正在研究新的非晶态和稀土磁性材料(如FeNa合金)。磁性液体已进入实用阶段。某些新的物理和化学效应的发现(如 拓扑效应)也给新材料的研制和应用(如磁声和磁热效应的应用)提供了条件。 参考书目

李荫远、李国栋编著:《铁氧体物理学》第二版,科学出版社,,1983。

具有铁磁性能的材料。电工技术中常用的磁性材料可分为高磁导率、低矫顽力、低剩磁的软磁材料和高矫顽力、高剩磁的永磁材料两大类。永磁材料又称硬磁材料。

磁性是物质的一种基本属性。物质按照其内部结构及其在外磁场中的性状可分为抗磁性、顺磁性、铁磁性、反铁磁性和亚铁磁性物质。铁磁性和 亚铁磁性物质为强磁性物质,其他均为弱磁性物质。

磁性材料有各向同性和各向异

性之分。各向异性材料的磁性能依方向不同而异。因此,在使用各向异性材料时, 必须注意其磁性能的方向。电工领域中常用的磁性材料都属于强磁性物质。反映磁性材料基本磁性能的有磁化曲线、磁滞回线和磁损耗等。 磁化曲线和磁滞回线 反映磁性材料磁化特性的曲线。可以用于确定磁性材料的一些基本特性参量如磁导率μ、饱和磁通密度Bs、剩余磁场强度即矫顽力Hc、剩余磁通密度即剩磁Br,以及磁滞损耗P等。 基本磁化曲线是铁磁物质以磁中性状态为出发点,在反复磁化过程中B 随H 变化规律的曲线,简称磁化曲线(图1)。它是确定软性磁铁磁材料工作点的依据。B 和H 的关系如下: B=μ0(H+M )

式中μ0为真空磁导率(又称磁常数),在单位制(SI)中,其值为

μ=4π×10-7

磁化曲线上任一点的B 与H 之比就是磁导率μ,即对于各向同性的导磁

物质μ=B/H, 常用的是相对磁导率μr

=μ/μ0,它是无量纲的纯数,用以表

示物质的磁化能力。因此,按μr的大小,把各类物质划分为:μr

<1的抗磁性

物质,μr>1的顺磁性物质,μr

1的强磁性物质。根据B-H 曲线可以描绘出μ-H

3 / 17

曲线,图中μm和μi分别称为磁导率和初始磁导率。μi是在低磁场下使用软磁材料的一个重要参量。

图2表示外磁场H 变化一周时B 随H变化而形成的闭合曲线。

由于B 的变化滞后于H,这个现象称为磁滞。闭合曲线称为磁滞回线。图中可见,当Hs降为零时,B 并不回到零,而仅到b点,此值(Br)称为剩余磁通密度,简称剩磁。若要使Br降到零,需加一反磁场,这个反磁场强度的称为

磁感应矫顽力,简称矫顽力Hrr

c。B与Bs之比称为剩磁比或称开关矩形比(B/Bs),它表征矩磁材料磁滞回线接近矩形的程度。磁滞回线的形状和面积直接表征磁性材料的主要磁特性。

软磁材料的磁滞回线窄,故矫顽力低,磁滞损耗也低(图3a),常用于电机、变压器、继电器的铁心磁路。若磁滞回线窄而接近于矩形(称为矩磁材

料)(图3c),则这种软磁材料不仅矫顽力低而且Br

/Bs值也高,适宜作记忆元件

和开关元件。永磁材料其磁滞回线面积宽大(图3b),Br

磁损耗 单位重量的磁性材料在交变磁场中磁化,从变化磁场中吸收并以热的形式耗散的功率称为磁损耗或铁损耗P。 它主要由磁滞损耗和涡流损耗引起。其中由磁滞现象引起的能量损耗称为磁滞损耗,它与磁滞回线所包围的面积成正比。磁滞损耗功率Ph可由下式计算Ph=кhBmnV

e=кeBmnV

式中кe为与材料的电阻率、截面大小、形状有关的系数。Ph和Pe是衡量电工设备、仪表产品质量好坏的重要参数。

具有强磁性的材料。这类材料微观特征是相邻原子或离子磁矩呈有序排列,从而显示出铁磁性或亚铁磁性。宏观特征是在外磁场作用下具有明显的磁化强度。4 / 17

按化学成分分类 基本上可分为金属磁性材料与铁氧体两大类。 ①金属磁性材料。主要是铁、镍、钴元素及其合金,如铁硅合金、铁镍合金、铁钴合金、钐钴合金、铂钴合金、锰铝合金等等。它们具有金属的导电性能,通常呈现铁磁性,具有较高的饱和磁化强度,较高的居里温度,较低的温度系数,在交变电磁场中具有较大的涡流损耗与趋肤效应, 因此金属软磁材料通常适用于低频、大功率的电力、电子工业。例如硅钢片的饱和磁感应强度约为2T(特斯拉),比一般铁氧体大5倍,广泛用作电力变压器。金 属永磁材料目前磁能积很高,用它可以制成体积小,重量轻的永磁器件,尤宜用于宇航等空间科技领域,其缺点是镍、钴以及稀土金属价格贵,材料来源少。 ②铁氧体。是指以氧化铁为主要成分的磁性氧化物,早期曾译名为“铁淦氧磁物“,简称“铁淦氧”,因其制备工艺沿袭了陶瓷和粉末冶金的工艺,有时也称为磁性瓷。大多数为亚铁磁性,从而饱和磁化强度较低,其电阻率却比

金属磁性材料高106

倍以上,在交变电磁场中损耗较低,在高频、微波、光频段应用时更显出其独特的优点,从晶体结构考虑,铁氧体主要分为:尖晶石型(与天然MgAl2O4尖晶石同晶型),例如锰锌铁氧体、镍锌铁氧体等;石榴石型〔与天然的(Fe,Mn)3Al2(SiO4)3石榴石同晶型〕,例如钇铁石榴石型铁氧体(Y3Fe5O12))等;六角晶系铁氧体,例如与天然Pb(Fe7.5)Mn3.5Al0.5Ti0.5)O19磁铅石同晶型的钡

铁氧体(BaFe)O2+

1219),易磁化轴处于六角平面内的Y型铁氧体(Ba2MeFe12)O22)等。 按应用情况分类 大体上可分为 6类(由于磁性材料的种类繁多,应用广泛,实际上决非此6类所能完全概括)。

①永磁材料又名硬磁材料。具有高矫顽力与剩磁值。通常以磁能积(BH)m衡量永磁材料的优值。例如:铝镍钴系合金、钐钴系合金、锰铝系合金、铁铬钴系合金以及钡铁氧体、锶铁氧体等。

②软磁材料。具有较低的矫顽力,较窄的磁滞回线。通常以初始磁导率,

饱和磁感应强度以及交流损耗等值的大小标志其主要性能。材料主要有 纯铁、铁硅合金系、铁镍合金系、锰锌铁氧体、镍锌铁氧体等。软磁材料是磁性材料中种类最多、应用最广泛的一类,在电力工业中主要是用作变压器、

电动机与

发 电机的磁性材料,在电子工业中制成各种磁性元件,广泛地应用于电视、广播、通信等领域。

③矩磁材料。磁滞回线呈矩形,而矫顽力较小的一种软磁材料,通常以剩磁Br与磁感应强度Bm之比的.矩形比Br/Bm值标志其静态特性。材料主要有锂锰铁氧体,锰镁铁氧体等。用在电子计算机,自动控制等技术中常作为记忆元件、开关和逻辑元件等的材料。

④旋磁材料。利用旋磁效应的磁性材料,通常用于微波频段,以复张量磁导率、饱和磁化强度等标志其主要性能。常用的材料为石榴石型铁氧 体、锂铁氧体等。可制作各种类型的微波器件,如隔离器、环流器、相移器等。自1952年以来,铁氧体在微波领域的应用,促使微波技术发生革命性的变革。利 用铁氧体的张量磁导率的特性才能制造出一系列非互易性微波器件;利用铁氧体的非线性效应,可设计出一系列有源器件,如倍频器、振荡器等。 ⑤压磁材料。利用磁致伸缩效应的磁性材料,以磁致伸缩系数标志其主要性能,通常用于机械能与电能的相互转换。例如可制成各种超声器件、滤波器、磁扭线存储器、振动测量器等。常用的材料为镍片、镍铁氧体等。目前正在深入研究磁声耦合效应,以期开拓新的应用领域。

⑥磁记录材料。主要包括磁头材料与磁记录介质两类,前者属于软磁材料,后者属于永磁材料,由于其应用的重要性与性能上的特殊要求而另列 一类。磁头材料除了应具有软磁材料的一般特性外,常要求高记录密度,低磨损。常用的有热压多晶铁氧体、单晶铁氧体、铝硅铁合金、硬叵姆合金等。磁记录介质 要求有较大的剩磁值,适当高的矫顽力值

,以便将电的信息通过磁头而在

5 / 17

磁性材料正在不断发展。例如非晶态磁性材料,磁性半导体等,都是当前极为活跃的研究领域。磁性材料的用途亦越趋广泛。

李荫远、李国栋编:《铁氧体物理学》,修订版,科学出版社,,1978。郭贻诚著:《铁磁学》,高等教育出版社,,1965。R.S.特贝尔、D.J.克雷克著,冶金研究所译:《磁性材料》,科学出版社,,1979。(R.S.Tebble and D.J.Craik, magnetic materials, Wiley Inters cience,London,1969.)

磁石

单位质量的磁性材料在交变磁场中磁化,从变化磁场中吸收并以热的形式耗散的功率称为磁损耗,或称铁损耗,它包括磁滞损耗和涡流损耗。其中由 磁滞现象引起的能量损耗为磁滞损耗,与磁滞回线所包围的面积成正比。在交变磁场中导电物质将感应出涡

流,由涡生的电阻损耗称涡流损耗。

篇二:电磁屏蔽材料的选用和设计要点

屏蔽就是对两个空间区域之间进行金属的隔离,以控制电场、磁场和电磁波由一个区域对另一个区域的感应和辐射。具体讲,就是用屏蔽体将元部件、电路、组合件、电缆或整个系统的干扰源包围起来,防止干扰电磁场向外扩散;用屏蔽体将接收电路、设备或系统包围起来,防止它们受到外界电磁场的影响。因为屏蔽体对来自导线、电缆、元部件、电路或系统等外部的干扰电磁波和内部电磁波均起着吸收能量(涡流损耗)、反射能量(电磁波在屏蔽体上的界面反射)和抵消能量(电磁感应在屏蔽层上产生反向电磁场,可抵消部分干扰电磁波)的作用,所以屏蔽体具有减弱干扰的功能。

(1)当干扰电磁场的频率较高时,利用低电阻率的金属材料中产生的涡流,形成对外来电磁波的抵消作用,从而达到屏蔽的效果。

(2)当干扰电磁波的频率较低时,要采用高导磁率的材料,从而使磁力线限制在屏蔽体内部,防止扩散到屏蔽的空间去。

(3)在某些场合下,如果要求对高频和低频电磁场都具

有良好的屏蔽效果时,往往采用不同的金属材料组成多层屏蔽体。

许多人不了解电磁屏蔽的原理,认为只要用金属做一个箱子,然后将箱子接地,就能够起到电磁屏蔽的作用。在这种概念指导下结果是失败。因为,电磁屏蔽与屏蔽体接地与否并没有关系。真正影响屏蔽体屏蔽效能的只有两个因素:一个是整个屏蔽体表面必须是导电连续的,另一个是不能有直接穿透屏蔽体的导体。屏蔽体上有很多导电不连续点,最主要的一类是屏蔽体不同部分结合处形成的不导电缝隙。这些不导电的缝隙就产生了电磁泄漏,如同流体会从容器上的缝隙上泄漏一样。解决这种泄漏的一个方法是在缝隙处填充导电弹性材料,消除不导电点。这就像在流体容器的缝隙处填充橡胶的道理一样。这种弹性导电填充材料就是电磁密封衬垫。

在许多文献中将电磁屏蔽体比喻成液体密封容器,似乎只有当用导电弹性材料将缝隙密封到滴水不漏的程度才能够防止电磁波泄漏。实际上这是不确切的。因为缝隙或孔洞是否会泄漏电磁波,取决于缝隙或孔洞相对于电磁波波长的尺寸。当波长远大于开口尺寸时,并不会产生明显的泄漏。因此,当干扰的频率较高时,这时波长较短,就需要使用电磁

密封衬垫。具体说,当干扰的频率超过10MHz时,就要考虑使用电磁密封衬垫。

凡是有弹性且导电良好的材料都可以用做电磁密封衬垫。按照这个原理制造的电磁密封衬垫有:

导电橡胶:在硅橡胶内填充占总重量70~ 80%比例的金属颗粒,如银粉、铜粉、、镀银铜粉、镀银、镀银玻璃球等。这种材料保留一部分硅橡胶良好弹性的特性,同时具有较好的导电性。

金属编织网:用铍铜丝、蒙乃尔丝或不锈钢丝编织成管状长条,外形很像屏蔽电缆的屏蔽层。但它的编织方法与电缆屏蔽层不同,电缆屏蔽层是用多根线编成的,而这种屏蔽衬垫是由一根线织成的。打个形象的比喻,就像毛衣的袖子一样。为了增强金属网的弹性,有时在网管内加入橡胶芯。

指形簧片:铍铜制成的簧片,具有很好的弹性和导电性。导电性和弹性。

点,使橡胶的弹性得以充分体现。它的原理有些像带橡胶芯的金属丝网条。

选择使用什么种类电磁密封衬垫时要考虑四个因素:屏蔽效能要求、有无环境密封要求、安装结构要求、成本要求。不同衬垫材料的特点比较,如表所示。

屏蔽按机理可分为电场屏蔽、磁场屏蔽和电磁场屏蔽。

【设计要点】:

a、 屏蔽板以靠近受保护物为好,而且屏蔽板的接地必须良好!!!

b、屏蔽板的形状对屏蔽效能的高低有明显影响。全封闭的金属盒,但工程中很难做到!

c、屏蔽板的材料以良导体为好,但对厚度无要求,只要有足够的强度就可了。

2 磁场屏蔽磁场屏蔽通常是指对直流或低频磁场的屏

蔽,其效果比电场屏蔽和电磁场屏蔽要的多。【 屏蔽机理】:主要是依靠高导磁材料所具有的低磁阻,对磁通起着分路的作用,使得屏蔽体内部的磁场大为减弱。

【设计要点】:

a、 选用高导磁材料,如坡莫合金;

b、 增加屏蔽体的厚度;以上均是为了减小屏蔽体的磁阻; c、 被屏蔽的物体不要安排在紧靠屏蔽体的位置上,以尽量减小通过被屏蔽物体体内的磁通;

d、 注意屏蔽体的结构设计,凡接缝、通风空等均可能增加屏蔽体的磁阻,从而降低屏蔽效果。

e、对于强磁场的屏蔽可采用双层磁屏蔽体的结构。对要屏蔽外部强磁场的,则屏蔽体的外层选用不易饱和的材料,如硅钢;而内部可选用容易达到饱和的高导磁材料,如坡莫合金等。反之,如果要屏蔽内部强磁场时,则材料的排列次序要到过来。在安装内外两层屏蔽体时,要注意彼此间的绝缘。当没有接地要求时,可用绝缘材料做支撑件。若需接地时,可选用非铁磁材料(如铜、铝)做支撑件。

3 电磁场屏蔽电磁场屏蔽是利用屏蔽体阻止电磁场在空间传播的一种措施。

篇三:铁磁材料的性质

铁磁材料的性质

铁成材料主要具恒压簧有如下的磁性能:

①高导磁性。铁磁材料的磁导率4在—投情况下远比非铁磁材料大。

②剩磁性。铁磁材料经磁无刷无环启动器化后,若励磁电流降低到o,铁磁材料中仍能保留一定的剩磁。

3磁饱和性。铁磁材料内的磁场增加到一定后,这时磁场增强变得极为缓慢,达到了饱和值。

④磁滞性。铁磁材料在交变磁化过程中,磁感应强度的变化滞后于磁场强度的变化且亩磁滞损耗。

铁磁材料常分成两类,软成材料和硕磁材料。软磁材料的剩磁、磁滞损耗等均较小,常用的软磁材料有硅钢片(电上钢板)、铸钢和铸铁等。硬磁材料的剩磁、磁滞损耗等均较大。硬磁材料经过磁化后,能得到很强的剩磁,而且不易退磁。常用的硬磁材料有钨钢、铝镍钻合金等,主要用于制造磁铁。

磁铁怎么分类啊?

问题一:制作一个电磁铁,需要什么材料? 漆包线,铁钉,电池

自然磁铁和电磁铁

超导体

亲!你好,我的回答希望得到你的满意!谢谢,你的满意是我的动力!

按形状分有条形磁体和蹄形磁体等。

按天然与否有天然磁体和人造磁体。

按照磁场产生的方式,磁体可以分为永磁体和电磁体。

常用铁磁材料有哪些

磁铁的分类

问题一:哪些是铁磁性材料 如果还有问题请到特问我,如果帮上了你的忙还望采纳!

多重导电橡胶:由两层橡胶构成,内层是普通硅橡胶,外层是导电橡胶。这种材料克服了传统导电橡胶弹性的缺

从材料和制造工艺上分:铁氧体(锰锌,镍锌) 铝镍钴(铸造,烧结) 铁铬钴(铸造,烧结) 钕铁硼(铸造,烧结,粘结) 钐钴 (铸造,烧结,粘结)橡胶磁(压延,注塑)钐铁氮(压延,注塑)铝铁碳(烧结)

从材料构成结构:普通,晶粒,纳米以及非晶

从耐温划分:常温磁铁 高温磁铁 低温磁铁

如果有不懂 私信我可以帮你

问题三:铁磁材料是如何分类的,它们各有什么特点 在各种磁性材料中,最重要的是以铁为代表的一类磁性很强的材料,它具有铁磁性。除铁之外,钴、镍、钆,镝和钬等也具有铁磁性。然而常用的高压磨粉机铁磁性材料多是铁和其他金属或非金属组成的合金,以及某些包含铁的氧化物(铁氧体)。铁磁性材料的磁特性常用特性曲线的形式来表示,其中最常用的是曲线(说明材料的磁感应强度和磁化场之间的依赖关系)。

材料的磁特性,除了和给定的测量参数(如磁化场强、温度以及机械应力有无等)有关外,还和“颚式价格”有关。起始磁化曲线是磁化场单调的增加时所得到的曲线。铁磁性材料的起始磁化曲线的共同特点是曲线由陡峭段和平坦段组成,分界点位于曲线上段弯曲部分。陡峭段对应于易磁化的情形,而平坦段对应于难以磁化情形。

当磁化场在正负两个方向上往复变化时,材料的磁化过程经历一个循环的过程。闭合曲线叫做材料的磁滞回线。如果材料在雷蒙磨价格磁化曲线两端都达到饱和,所得回线就叫做饱和磁滞回线或主磁滞回线。磁化场的循环范围逐渐缩小,所得一系列磁滞回线的顶端的轨迹就是正常磁化曲线。这一曲线颇有用处,因为它可以,并且它也能说明材料的磁特性。正常磁化曲线和起始磁化曲线的形状很相似。

问题四:常用铁磁材料的基本磁化曲线咋看! 磁化曲线

磁滞回线

磁滞回线的定义

当铁磁质达到磁饱和状态后,如果减小磁化场H,介质的磁化强度M(或磁感应强度B)并不沿着起始磁化曲线减小,M(或B)的变化滞后于H的变化。这种现象叫磁滞。

在磁场中,铁磁体的磁感应强度与磁场强度的关系可用曲线来表示,当磁化磁场作周期的变化时,铁磁体中的磁感应强度与磁场强度的关系是一条闭合线,这条闭合线叫做磁滞回线[1]。

问题五:常用金属材料有哪些物理性能 常用金属材料的物理性能主要表现在以下几个方面:(1)密度:某种物质单位体积的质量称为该物质的密度。金属的密度即是单位体积金属的质量。表达式如下:

ρ=m/V

式中ρ-物质的密度,kg/m3;m-物质的质量,kg;V-物质的体积,m3。

(2)熔点:纯金属和合金从固态向液态转变时的温度称为熔点。纯金属都有固定的熔点。合金的熔点决定于它的成分。

(3)导热性:金属材料传导热量的性能称为导热性。导热性的大小通常用热导率来衡量。热导率符号是入,热导率越大,金属的导热性越好。银的导热性,铜、铝次之。合金的导热性比纯金属。

(4)热膨胀性:金属材料随着温度变化而膨胀、收缩的特性称为热膨胀性。一般来说金属受热时膨胀而体积增大,冷却时收缩而体积缩小。

热膨胀的大小用线胀系数αt和体胀系数αv表示。计算公式如下:

式中 αt-线胀系数,1/K或1/℃;l1-膨胀前长度,m;l2-膨胀后长度,m;△t-温度变化量△t=t2-t1,K或℃。

体胀系数近似为线胀系数的3倍。

(5)导电性:金属材料传导电流的性能称为导电性。

衡量金属材料导电性的指标是电阻率p,电阻率越小,金属导电性越好。金属导电性以银为,铜、铝次之。合金的导电性比纯金属。

(6)磁性:金属材料在磁场中受到磁化的性能称为磁性。根据金属材料在磁场中受到磁化程度的不同,可分为铁磁材料(如:铁、钴等)、顺磁材料(如:锰、铬等)、抗磁性材料(如:铜、锌等)三类。铁磁材料在外磁场中能强烈地被磁化;顺磁材料在外磁场中,只能微弱地被磁化;抗磁材料能抗拒或削弱外磁场对材料本身的磁化作用。工程上实用的强磁性材料是铁磁材料。磁性与材料的成分和温度有关,不是固定不变的。当温度升高时,有的铁磁材料会消失磁性。

问题六:铁磁性材料具有什么性 1.看你咋分类,大的来讲按性能分:软磁和硬磁 2.材质分,稀土,金属,粉末磁性材料 3.从功能上又分耐高低温,常温 4.从科技含量分 普通磁性材料和纳米级磁性材料 5.铁铬钴,铝镍钴,钐钴,铷铁硼,铁氧体。。。。。。

电磁铁的种类有哪些?

磁性材料按应用类型可以分为软磁、永磁等材料。软磁材料是具有低矫顽力和高磁导率的磁性材料,易于磁化,也易于退磁,其主要功能是导磁、电磁能量的转换与传输,广泛用于各种电能变换设备中。

你是想问电磁铁分类吗?给你个参考,从特性分常见的电磁铁种类有保持电磁铁、旋转电磁铁、吸盘电磁铁、推拉电磁铁、拍打电磁铁等,如果从外形分,可以有长方形电磁铁、圆形电磁铁。金禄电磁铁是按照应用领域来分的,有办公设备电磁铁、汽车电磁铁、医疗用电磁铁、家电行业电磁铁、纺织电磁铁、安防电磁铁等,他们分的还是比较细的,做电磁铁生产也十几年了,值得信任呢。

具有磁有序的强磁性物质,广义还包括可应用其磁性和磁效应的弱磁性及反铁磁性物质。磁性是物质的一种基本属性。物质按照其内部结构及其在外 磁场中的性状可分为抗磁性、顺磁性、铁磁性、反铁磁性和亚铁磁性物质。铁磁性和亚铁磁性物质为强磁性物质,抗磁性和顺磁性物质为弱磁性物质。磁性材料按性 质分为金属和非金属两类,前者主要有电工钢、镍基合金和稀土合金等,后者主要是铁氧体材料 。按使用又分为软磁材料、永磁材料和功能磁性材料。功能磁性材料主要有磁致伸缩材料、磁记录材料、[[磁电阻材料]、磁泡材料、磁光材料,旋磁材料以及磁性薄膜材料等,反应磁性材料基本磁性能的有磁化曲线、磁滞回线和磁损耗等。

软磁材料怎么分类?

铁芯由9%Al、5%Si, 85%Fe粉构成。主要是替代铁粉芯,损耗比铁粉芯低80%,可在8kHz以上频率下使用;饱和磁感在1.05T 左右;导磁率从26~125;磁致伸缩系数接近0,在不同的频率下工作时无噪声产生;比MPP有更高的DC偏压能力;具有的性能价格比。主要应用于交流电感、输出电感、线路滤波器、功率因素校正电路等。有时也替代有气隙铁氧体作变压器铁芯使用。

软磁材料主要包括金属软磁材料、铁氧体软磁材料以及其他软磁材料。

1 电场屏蔽【屏蔽机理】:将电场感应看成分布电容间的耦合。

其中铁氧体软磁是以Fe2O3为成分的亚铁磁性氧化物,采用粉末冶金的方法制成,主要有Mn-Zn、Cu-Zn、Ni-Zn等几类。镍锌铁氧体由于具有高频、宽频、高阻抗、低损耗的特点,在高频范围(1-100MHz)内应用最广、性能优异的软磁铁氧体材料。可用于制作中周变压器、磁头、短波天线棒、调谐电感电抗器等。

软磁材料分类:

一、粉芯类:磁粉芯:磁粉芯是由铁磁性粉粒与绝缘介质混合压制而成的一种软磁材料。

软磁铁氧体 (Ferrites):软磁铁氧体是以Fe2O3为主成分的亚铁磁性氧化物,采用粉末冶金方法生产。

二、带绕铁芯

硅钢片铁芯: 硅钢片是一种合金,在纯铁中加入少量的硅(一般在4.5%以下)形成的铁硅系合金称为硅钢。

三、坡莫合金: 坡莫合金常指铁镍系合金,镍含量在30~90%范围内。是应用非常广泛的软磁合金。

四、非晶及纳米晶软磁合金: 硅钢和坡莫合金软磁材料都是晶态材料,原子在三维空间做规则排列,形成周期性的点阵结构。

坡莫合金是高初磁导率软磁合金

产品特点:具有高或极高的起始磁导率和量大磁导率,极低的矫顽力,较低的饱和磁感。

产品用途:弱磁场中使用的高灵敏度和小型功率变压器、小功率磁放大器、继电器、扼流圈、磁记录装置用磁头、磁屏蔽、各种带绕铁芯、切割铁芯及叠片铁芯。

是高饱和磁感应强度铁钴钒软磁合金,在现有软磁材料中该合金的饱和磁感应强度(2.4T),居里点也很高(980℃),饱和磁致伸缩系数(60~100×10-6)。由于饱和磁感应强度高,在制作同等功率的电机时,可大大缩小体积,在作电磁铁时,在同样截面积下能产生大的吸合力。由于居里点高,可使该合金能在其他软磁材料已经完全退磁的较高温度下工作,并保持良好的磁稳定性。由于有大的磁致伸缩系数,极适于作磁致伸缩换能器,输出能量高,工作效率也高。该合金电阻率低(0.27μΩ·m),不宜在高频下使用。价格较贵、易氧化、加工性能,添加适量镍或其他元素,可改善其加工性。

从材料上来说有:镍锌、镍铜锌芯两种,从磁导率上来讲一般是指磁导率5~100,150~800,1000以上的主要分类,其中磁导率越低镍含量越高,价格越昂贵,其实划分标准目前行业中没有一个的说法。1000以上的含有一部分氧化铜,磁导率越高,铜含量相对的要高一些。

电磁铁是什么材料?

这主要是因为材料与国民经济建设、建设和生活密切相关。材料除了具有重要性和普遍性以外,还具有多样性。由于材料多种多样,分类方法也就没有一个统一标准。材料是物质,但不是所有物质都可以称为材料。如燃料和化学原料、工业化学品、食物和物,一般都不算是材料。但是这个定义并不那么严格。

问题二:电磁铁 铁芯用什么材料好 用导向型冷压硅钢片。这种硅钢片磁场导向好,磁阻小,所以磁损耗小。

问题三:电磁铁的外壳用什么材质好 电磁铁的外壳只是一般使用,可以使用塑料外壳,便宜、方便,如果是怕泄磁,就需要使用矽钢片(或者铁)做磁屏蔽盒了。

问题四:继电器中的电磁铁铁芯是什么材料? 最多用的是硅钢 要求导磁且不易磁化

各种继电器产生的磁场强度不一样

跟电压有关,也跟线圈大小和磁芯的材质相关

问题五:电磁铁的铁芯用什么材料做? 用导参考书目磁好的硅钢材料

问题六:电磁铁的铁芯一般用什么材料做 硅钢

问题七:磁铁是什么材料制作成的? 磁铁有二种,一种是黑色,易敲碎,是钢渣粉碎,x磨,压制成型,烧结而成,价廉。另一种是用专做磁铁的钢材浇铸而成,打磨后为钢铁的本色,价贵。

问题八:制作一个电磁铁,需要什么材料? 漆包线,铁钉,电池

问题九:磁铁的主要成分是什么 磁铁的分类太多了,我在这里就简单说下:

磁性料材主要有二大类:

第二是软磁(也叫电磁铁):需要外界通电才能产生磁力

永磁材料也有二大分类:

大类是:合金永磁材料包括稀土永磁材料(钕铁硼Nd2Fe14B)、钐钴(SmCo)、钕镍钴(NdNiCO)

第二大类是:铁氧体永磁材料(Ferrite)按生产工艺不同分为:烧结铁氧体

(Sintered Ferrite)、粘结铁氧体(橡胶磁 Rubber Magnet)、注塑铁氧体

(Zhusu Ferrite),这三种工艺依据磁晶的取向不同又各分为等方性和异方性磁体。

这些就是目前市面上的主要永磁材料,还有一些因生产工艺原或成本原因,不能大范围应用而淘汰,如Cu-Ni-Fe(铜镍铁)、Fe-Co-Mo(铁钴钼)、Fe-Co-V(铁钴钒)、MnBi(锰铋)、AlMnC(钴锰碳)

(1)、烧结钕铁硼(Sintered NdFeB)――(烧结钕铁硼永磁体经过气流磨制粉后冶炼而成,矫顽力值很高,且拥有极高的磁性能,其磁能积(BHmax)高过铁氧体(Ferrite)10倍以上。其本身的机械性能亦相当之好,可以切割加工不同的形状和钻孔。高性能产品的工作温度可达200摄氏度。由於它的物质含量容易导致锈蚀,所以根据不同要求必须对表面进行不同的虿愦理。(如镀Zn,Ni,Au,Epoxy等)。非常坚硬和脆、有高抗退磁性、高成本/性能比例、不适用于高工作温度);

(2)、粘结钕铁硼(Bonded NdFeB)――粘结钕铁硼是将钕铁硼粉末与树脂、塑胶或低熔点金属等粘结剂均匀混合,然后用压缩、挤压或注射成型等方法制成的复合型钕铁硼永磁体。产品一次成形,无需二次加工、可直接做成各种复杂的形状。粘结钕铁硼的各个方向都有磁性,可以加工成钕铁硼压缩模具和注塑模具。精密度高、磁性能、耐腐蚀性好、温度稳定性好。

(3)、注塑钕铁硼(Zhusu NdFeB)――有极高之度、容易制成各向异性形状复杂的薄壁环或薄磁体

2. 烧结铁氧体(Sintered Ferrite)的主要原料包括BaFe12O19和SrFe12O19,依据磁晶的取向不同分为等方性和异方性磁体。由于其低廉的价格和适中的磁性能而成为目前应用最为广泛的一种磁体。年产量达300吨以上。铁氧体磁铁是通过陶瓷工艺法制造而成,质地也比较坚硬,也属脆性材料,由于铁氧体磁铁有很好的耐温性及价格低廉,已成为应用最为广泛的永磁体。

3. 橡胶磁(Rubber Magnet)是铁氧体磁材系列中的一种,由粘结铁氧体料粉与合成橡胶复合经挤出成型、压延成型、注射成型等工艺而制成的具有柔软性、弹性及可扭曲的磁体。可加工成条状、卷状、片状及各种复杂形状。 橡胶磁体由磁粉(SrO6Fe2O3)、聚乙烯(CPE)和其它添加剂(EBSO、DOP)等组成,通过挤出、压延制造而成。橡胶磁材可以是同性的或异性的,它由铁氧体磁粉、CPE和某些微量元素制成,可弯、可捻、可卷。它无需更多机械加工即可使用,也可以按所需尺寸修整形状,橡胶磁也可以根据客户要求复PVC,背胶,上UV油等。它的磁能积在0.60 至1.50 MGOe之间。 橡胶磁材的应用领域:冰箱、讯息告示架、将物件固定于 金属体以用作广告等的紧固件,用于玩具、教学仪器、开关和感应器的磁片。主要应用于微特电机、电冰箱、消毒柜、厨柜、玩具、文具、广告等行业。

4. 铝镍钴(A......>>

问题十:继电器中的电磁铁铁芯是什么材料? 最多用的是硅钢 要求导磁且不易磁化

各种继电器产生的磁场强度不一样

跟电压有关,也跟线圈大小和磁芯的材质相关

变压器磁芯的材质具体的分类,都有什么材料。?

(1) 铁粉芯 常用铁粉芯是由碳基铁磁粉及树脂碳基铁磁粉构成。在粉芯中价格。饱和磁感应强度值在1.4T左右;磁导率范围从22~100;初始磁导率μi随频率的变化稳定性好;直流电流叠加性能好;但高频下损耗高。铁粉芯初始磁导率随直流磁场强度的变化。铁粉芯初始磁导率随频率的变化

(2)坡莫合金粉芯

坡莫合金粉芯主要有钼坡莫合金粉芯(MPP)及高磁通量粉芯(High Flux)。 MPP 是由81%Ni、2%Mo及Fe粉构成。

主要特点是:饱和磁感应强度值在7500Gs左右;磁导率范围大,从14~550;在粉末磁芯中具有的损耗;温度稳定性,广泛用于太空设备、露天设备等;磁致伸缩系数接近零,在不同的频率下工作时无噪声产生。主要应用于300kHz以下的高品质因素Q滤波器、感应负载线圈、谐振电路、在对温度稳定性要求高的LC电路上常用、输出电感、功率因素补偿电路等, 在AC电路中常用, 粉芯中价格。

高磁通粉芯HF是由50%Ni、50%Fe粉构成。主要特点是:饱和磁感应强度值在15000G式中为频率(Hz);Bm为磁通密度(T);指数 n为经验参数,和Bm大小有关;V为磁性材料的体积;кh为与铁磁物质性质有关的系数。在交变磁场中导电物质(包括铁磁物质)将感应出涡流,由涡生的电阻损耗称为涡流损耗。涡流损耗的功率Pe可由下式计算 P2s 左右;磁导率范围从14~160;在粉末磁芯中具有的磁感应强度,的直流偏压能力;磁芯体积小。主要应用于线路滤波器、交流电感、输出电感、功率因素校正电路等, 在DC 电路中常用,高DC 偏压、高直流电和低交流电上用得多。价格低于MPP。

(3) 铁芯(Kool Mμ C问题二:常见的磁性材料有哪些? 从性能上分为:硬磁和软磁ores)

磁铁的分类

磁力大小排列为(在磁铁体积相同的情况下):钕铁硼、异方性铁氧体、钐钴、钕镍钴、同性铁氧体.我厂是做磁铁的,这上面的排列只是按我个人接触磁铁经验排的.

电磁铁是通电产生电磁的一种装置。在铁芯的外部缠绕与其功率相匹配的导电绕组,这种通有电流的线圈像磁铁一样具有磁性,它也叫做电磁铁(electromagnet)。我们通常把它制成条形或蹄形状,以使铁芯更加容易磁化。另外,为了使电磁铁断电立即消磁,我们往往采用消磁较快的的软铁或硅钢材料我们平是说的磁铁,一般都是指永磁材料来制作。这样的电磁铁在通电时有磁性,断电后磁就随之消失。电磁铁在我们的日常生活中有着极其广泛的应用,由于它的发明也使发电机的功率得到了很大的提高。

当在通电螺线管内部插入铁芯后,铁芯被通电螺线管的磁场磁化。磁化后的铁芯也变成了一个磁体,这样由

电磁铁

于两个磁场互相叠加,从而使螺线管的磁性大大增强。为了使电磁铁的磁性更强,通常将铁芯制成蹄形。但要注意蹄形铁芯上线圈的绕向相反,一边顺时针,另一边必须逆时针。如果绕向相同,两线圈对铁芯的磁化作用将相互抵消,使铁芯不显磁性。另外,电磁铁的铁芯用软铁制做,而不能用钢制做。否则钢一旦被磁化后,将长期保持磁性而不能退磁,则其磁性的强弱就不能用电流的大小来控制,而失去电磁铁应有的优点。

电磁铁是可以通电流来产生磁力的器件,属非磁铁,可以很容易地将其磁性启动或是消除。例如:大型起重机利用电磁铁将废弃车辆抬起。

当电流通过导线时,会在导线的周围产生磁场。应用这性质,将电流通过螺线管时,则会在螺线管之内制成均匀磁场。设在螺线管的中心置入铁磁性物质,则此铁磁性物质会被磁化,而且会大大增强磁场。

一般而言,电磁铁所产生的磁场与电流大小、线圈圈数及中心的铁磁体有关。在设计电磁铁时,会注重线圈的分布和铁磁体的选择,并利用电流大小来控制磁场。由于线圈的材料具有电阻,这限制了电磁铁所能产生的磁场大小,但随着超导体的发现与应用,将有机会超越现有的限制。

希望我能帮助你解疑释惑。

仙剑奇侠传三技能 仙剑奇侠传三技能怎么获得
上一篇
异度之刃2dlc 异度之刃2dlc异刃
下一篇
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 836084111@qq.com ,一经查实,本站将立刻删除。

相关推荐