图象特征
函数性质
函数图象都在y轴右侧
函数的定义域为(0,+∞)
图象关于原点和y轴不对称
非奇非偶函数
向y轴正负方向无限延伸
函数的值域为R
函数图象都过定点(1,0)
自左向右看,
图象逐渐上升
自左向右看,
图象逐渐下降
增函数
减函数
象限的图象纵坐标都大于0
象限的图象纵坐标都大于0
第二象限的图象纵坐标都小于0
第二象限的图象纵坐标都小于0
(三)幂函数
1、幂函数定义:一般地,形如 的函数称为幂函数,其中 为常数.
2、幂函数性质归纳.
(1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1);
(2) 时,幂函数的图象通过原点,并且在区间 上是增函数.特别地,当 时,幂函数的图象下凸;当 时,幂函数的图象上凸;
(3) 时,幂函数的图象在区间 上是减函数.在象限内,当 从右边趋向原点时,图象在 轴右方无限地逼近 轴正半轴,当 趋于 时,图象在 轴上方无限地逼近 轴正半轴.
第三章 函数的应用
一、方程的根与函数的零点
1、函数零点的概念:对于函数 ,把使 成立的实数 叫做函数 的零点。
2、函数零点的意义:函数 的零点就是方程 实数根,亦即函数 的图象与 轴交点的横坐标。即:
方程 有实数根 函数 的图象与 轴有交点 函数 有零点.
3、函数零点的求法:
求函数 的零点:
1 (代数法)求方程 的实数根;
2 (几何法)对于不能用求根公式的方程,可以将它与函数 的图象联系起来,并利用函数的性质找出零点.
高一数学人教版必修一单元知识点:函数的基本性质
1.高中数学必修一函数的基本性质——函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于A中的任意一个数x,在B中都有确定的数f(x)和它对应,那么就称f:A→B为从A到B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的{f(x)| x∈A }叫做函数的值域.
注意:如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的; 函数的定义域、值域要写成或区间的形式.
定义域补充
能使函数式有意义的实数 x 的称为函数的定义域,求函数的定义域时列不等式组的主要依据是:
(1) 分式的分母不等于零;
(2) 偶次方根的被开方数不小于零;
(3) 对数式的真数必须大于零;
(4) 指数、对数式的底必须大于零且不等于 1.
(5) 如果函数是由一些基本函数通过四则运算结合而成的 . 那么,它的定义域是使各部分都有意义的 x 的值组成的 .
(6)指数为零底不可以等于零
构成函数的三要素:定义域、对应关系和值域
再注意:
(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)
(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备)
值域补充
( 1 )、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域 . ( 2 ) . 应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础 . ( 3 ) . 求函数值域的常用方法有:直接法、反函数法、换元法、配方法、均值不等式法、判别式法、单调性法等 .
3. 高中数学必修一函数的基本性质——函数图象知识归纳
(1) 定义:在平面直角坐标系中,以函数 y=f(x) , (x ∈A)中的 x 为横坐标,函数值 y 为纵坐标的点 P(x , y) 的 C ,叫做函数 y=f(x),(x ∈A)的图象.
C 上每一点的坐标 (x , y) 均满足函数关系 y=f(x) ,反过来,以满足 y=f(x) 的每一组有序实数对 x 、 y 为坐标的点 (x , y) ,均在 C 上 . 即记为 C={ P(x,y) | y= f(x) , x ∈A }
图象 C 一般的是一条光滑的连续曲线 ( 或直线 ), 也可能是由与任意平行与 Y 轴的直线最多只有一个交点的若干条曲线或离散点组成 .(2) 画法
A、描点法:根据函数解析式和定义域,求出 x,y 的一些对应值并列表,以 (x,y) 为坐标在坐标系内描出相应的点 P(x, y) ,用平滑的曲线将这些点连接起来 .
B、图象变换法(请参考必修4三角函数)
常用变换方法有三种,即平移变换、伸缩变换和对称变换
(3) 作用:
1 、直观的看出函数的性质; 2 、利用数形结合的方法分析解题的思路。提高解题的速度。
发现解题中的错误。
4.高中数学必修一函数的基本性质——快去了解区间的概念
(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.
5.高中数学必修一函数的基本性质——什么叫做映射
一般地,设A、B是两个非空的,如果按某一个确定的对应法则f,使对于A中的任意一个元素x,在B中都有确定的元素y与之对应,那么就称对应f:A B为从A到B的一个映射。记作“f:A B”
给定一个A到B的映射,如果a∈A,b∈B.且元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做元素b的原象
说明:函数是一种特殊的映射,映射是一种特殊的对应,①A、B及对应法则f是确定的;②对应法则有“方向性”,即强调从A到B的对应,它与从B到A的对应关系一般是不同的;③对于映射f:A→B来说,则应满足:(Ⅰ)A中的每一个元素,在B中都有象,并且象是的;(Ⅱ)A中不同的元素,在B中对应的象可以是同一个;(Ⅲ)不要求B中的每一个元素在A中都有原象。
常用的函数表示法及各自的优点:
函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据; 解析法:必须注明函数的定义域; 图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征; 列表法:选取的自变量要有代表性,应能反映定义域的特征.
注意啊:解析法:便于算出函数值。列表法:便于查出函数值。图象法:便于量出函数值
补充一:分段函数 (参见课本P24-25)
在定义域的不同部分上有不同的解析表达式的函数。在不同的范围里求函数值时必须把自变量代入相应的表达式。分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.(1)分段函数是一个函数,不要把它误认为是几个函数;(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.
补充二:复合函数
如果 y=f(u),(u ∈M),u=g(x),(x∈A),则 y=f[g(x)]=F(x),(x∈A) 称为f、g的复合函数。
高中数学必修一说课稿
北师大版高中数学必修一说课稿
作为一名教职工,有必要进行细致的说课稿准备工作,说课稿有助于顺利而有效地开展教学活动。写说课稿需要注意哪些格式呢?下面是我收集整理的北师大版高中数学必修一说课稿,希望能够帮助到大家。
高中数学必修一说课稿1 函数的单调性
今天我说课的题目是《函数的单调性》,下面我将围绕本节课“教什么?”、“怎样教?”以及“为什么这样教?”三个问题,从教材分析、教学目标分析、教学重难点分析、教法与学法、教学过程五方面逐一加以分析和说明。
一、说教材
1、教材的地位和作用
本节内容选自北师大版高中数学必修1,第二章第3节。函数是高中数学的课程,它是描述事物运动变化的模型,而函数的单调性是函数的一大特征,它为我们之后的学习奠定重要基础。
2、学情分析
本节课的学生是高一学生,他们在初中阶段,通过一次函数、二次函数、反比例函数的学习已经对函数的增减性有了初步的感性认识。在高中阶段,用符号语言刻画图形语言,用定量分析解释定性结果,有利于培养学生的理性思维,为后续函数的学习作准备,也为利用倒数研究单调性的相关知识奠定了基础。
教学目标分析
基于以上对教材和学情的分析以及新课标教学理念,我将教学目标分为以下三个部分:
1.知识与技能
(1)理解函数的单调性和单调函数的意义;
(2)会判断和证明简单函数的单调性。
2.过程与方法
(1)培养从概念出发,进一步研究性质的意识及能力;
(2)体会数形结合、分类讨论的数学思想。
3.情感态度与价值观
由合适的例子引发学生探求数学知识的欲望,突出学生的主观能动性,激发学生学习数学的兴趣。
三、教学重难点分析
通过以上对教材和学生的分析以及教学目标,我将本节课的重难点
重点:
函数单调性的概念,判断和证明简单函数的单调性。
难点:
1.函数单调性概念的认知
(1)自然语言到符号语言的转化;
(2)常量到变量的转化。
2.应用定义证明单调性的代数推理论证。
四、教法与学法分析
1、教法分析
基于以上对教材、学情的分析以及新课标的教学理念,本节课我采用启发式教学、多媒体辅助教学和讨论法。学生可以在多媒体中感受到数学在生活中的应用,启发式教学和讨论法发散学生思维,培养学生善于思考的能力。
2、学法分析
新课改理念告诉我们,学生不仅要学知识,更重要的是要学会怎样学习,为终生学习奠定扎实的基础。所以本节课我将学生通过合作交流、自主探索的方法理解函数的单调性及特征。
五、教学过程
为了更好的实现本课的三维目标,并突破重难点,我设计以下五个环节来进行我的教学。
(一)知识导入
温故而知新,我将先从之前学习的知识引入,给出一些函数,比如y=x、y=-x、y=|x|,让学生作出这些函数的图像,然后让学生讨论这些函数图像是上升的还是下降的,由此引入到我的新课。在这个过程中不仅可以检查学生掌握基本初等函数图像的情况,而且符合学生的认知结构,通过学生自主探究,从知识产生、发展的过程中构建新概念,有利于激发学生的思维和学习的积极主动性。
(二)讲授新课
1.问题:分别做出函数y=x2,y=x+2的图像,指出上面的.函数图象在哪个区间是上升的,在哪个区间是下降的?
通过学生熟悉的图像,及时学生观察,函数图像上A点的运动情况,学生能用自然语言描述出,随着x增大时图像变化规律。让学生大胆的去说,老师逐步修正、完善学生的说法,给出正确。
2.观察函数y=x2随自变量x变化的情况,设置启发式问题:
(1)在y轴的右侧部分图象具有什么特点?
(2)如果在y轴右侧部分取两个点(x1,y1),(x2,y2),当x1
(3)如何用数学符号语言来描述这个规律?
教师补充:这时我们就说函数y=x2在(0,+∞)上是增函数。
(4)反过来,如果y=f(x)在(0,+∞)上是增函数,我们能不能得到自变量与函数值的变化规律呢?
类似地分析图象在y轴的左侧部分。
通过对以上问题的分析,从正、反两方面领会函数单调性。师生共同总结出单调增函数的定义,并解读定义中的,如:区间内,任意,当x1
仿照单调增函数定义,由学生说出单调减函数的定义。
教师总结归纳单调性和单调区间的定义。注意强调:函数的单调性是函数在定义域某个区间上的局部性质,也就是说,一个函数在不同的区间上可以有不同的单调性。
(我将给出函数y=x2,并画出这个函数的图像,让学生观察函数图像的特点,让他们描述函数图像的增减性,慢慢得到函数单调性的概念。在这个过程中,学生把对图像的感性认识转化为了数学关系,这种从特殊到一般的学习过程有利于学生对概念的理解)
(三)巩固练习
1练习1:说出函数f(x)=的单调区间,并指明在该区间上的单调性。x
练习2:练习2:判断下列说法是否正确
①定义在R上的函数f(x)满足f(2)>f(1),则函数是R上的增函数。
②定义在R上的函数f(x)满足f(2)>f(1),则函数是R上不是减函数。
1③已知函数y=,因为f(-1)
1我将给出一些具体的函数,如y=,f(x)=3x+2让学生说出函数的单调区间,并指明在该区间x
上的单调性。通过这种练习的方式,帮助学生巩固对知识的掌握。
(四)归纳总结
我先让学生进行小结,函数单调性定义,判断函数单调性的方法(图像、定义),然后教师进行补充,在这样一个过程中既有利于学生巩固知识,也有利于教师对学生的学习情况有一定的了解,为下一节课的教学过程做好准备。
(五)布置作业
必做题:习题2-3A组第2,4,5题。
选做题:习题2-3B组第2题。
新课程理念告诉我们,不同的人在数学上可以获得不同的发展,因此要设计不同程度要求的习题。
高中数学必修一说课稿2 今天我说课的题目是《二次函数的图像》,下面我将围绕本节课“教什么?”、“怎样教?”以及“为什么这样教?”三个问题,从教材分析、教学目标分析、教学重难点分析、教法与学法、课堂设计五方面逐一加以分析和说明。
一、教材分析
教材的地位和作用
本节内容选自北师大版高中数学必修1,第二章第4.1节。二次函数的图像在教材中起着承上启下的作用。
学情分析
本节课的学生是高一学生,他们在初中的时候已经学习过有关内容,为本节课的学习打下了基础,另一方面,二次函数解析式中的系数由常数转变为参数,使学生对二次函数的图像由感性认识上升到理性认识,能培养学生利用数形结合思想解决问题的能力。
二、教学目标分析
基于以上对教材和学情的分析以及新课标教学理念,我将教学目标分为以下三个部分:
1.知识与技能
理解二次函数中参数a,b,c,h,k对其图像的影响;
2.过程与方法
通过体验对二次函数图像平移的研究方法,能迁移到其他函数图像的研究。
3.情感态度与价值观
通过本节的学习,进一步体会数形结合思想的作用,感受到数学中数与形的辩证统一。
三、教学重难点分析
通过以上对教材和学生的分析以及教学目标,我将本节课的重难点确定如下
重点:
二次函数图像的平移变换规律及应用。
难点:
探索平移对函数解析式的影响及如何利用平移变换规律求函数解析式,并能把平移变换规律迁移到其他函数。
四、教法与学法分析
1、教法分析
基于以上对教材、学情的分析以及新课改的要求,本节课我采用启发式教学、多媒体辅助教学和讨论法。学生可以在多媒体中感受到数学在生活中的应用,启发式教学和讨论法发散学生思维,培养学生善于思考的能力。
2、学法分析
新课改理念告诉我们,学生不仅要学知识,更重要的是要学会怎样学习,为终生学习奠定扎实的基础。所以本节课我将学生通过合作交流、自主探索的方法进行学习。
五、教学过程
为了更好的实现本课的三维目标,并突破重难点,我将设计以下五个环节来进行我的教学。
(1)知识导入
温故而知新,我将先从之前学习的知识引入,给出一些函数,比如y=x2、y=2x2,让学生作出这些函数的图像,然后让学生比较这些函数图像的相同点和不同点,由此引入我的新课。一方面让学生总结复习已有知识,为后面的学习做好铺垫,另一方面,使学生在自己熟悉的问题中首先获得解题成功的快乐体验。
(2)讲授新课
例1:画出函数y=2x2,y=2(x+1)2,y=2(x+1)2+3的图像
让学生画出他们的图像并观察函数图像的特点,再让学生与多媒体课件展示的图像进行对比,得出结论:若二次函数的解析式为y=ax2+bx+c,先将其化成y=a(x+h)2+k的形式,从而判断出y=ax2+bx+c是如何由y=ax2变换得到的。
前面的练习和例题,基本涵盖了二次函数图像平移变换的各种情况,启发并了学生将实例的结论进行总结,得出y=x2到y=ax2,y=ax2到y=a(x+h)2+k,y=ax2到y=ax2+bx+c(其中,a均不为0)的图像变化过程,即a>0开口向上,a<0开口向下;h正左移,h负右移;k正上移,k负下移。在这个过程中,学生把对图像的感性认识转化为了数学关系,这种从特殊到一般的学习过程有利于学生对概念的理解,
(3)巩固练习
我将组织学生进行练习,完成课本44页1-3题。通过这种练习的方式,帮助学生巩固和加深二次函数中参数对图像的影响。
(4)归纳总结
我先让学生进行小结,然后教师进行补充,在这样一个过程中既有利于学生巩固知识,也有利于教师对学生的学习情况有一定的了解,可以进行适当反思,为下一节课的教学过程做好准备。
高中数学必修一说课稿3 大家好!
今天我说课的内容是《函数的概念》,选自人教版高中数学必修一章第二节。下面介绍我对本节课的设计和构思,请您多提宝贵意见。
我的说课有以下六个部分:
一、背景分析
1、学习任务分析
本节课是必修1第1章第2节的内容,是函数这一章的起始课,它上承,下引性质,与方程、不等式、数列、三角函数、解析几何、导数等内容联系密切,是学好后继知识的基础和工具,所以本节课在数学教学中的地位和作用是至关重要的。
2、学情分析
学生在初中已经学习了函数的概念,初步具备了学习函数概念的基本能力,但函数的概念从初中的变量学说到高中阶段的对应说很抽象,不易理解。
另外,通过对的学习,学生基本适应了有效教学的课堂模式,初步具备了小组合作、自主探究的学习能力。
基于以上的分析,我认为本节课的教学重点为:函数的概念以及构成函数的三要素;
教学难点为:函数概念的形成及理解。
二、教学目标设计
根据《课程标准》对本节课的学习要求,结合本班学生的情况,故而确立本节课的教学目标。
1、知识与技能(方面)
通过丰富的实例,让学生
①了解函数是非空数集到非空数集的一个对应;
②了解构成函数的三要素;
③理解函数概念的本质;
④理解f(x)与f(a)(a为常数)的区别与联系;
⑤会求一些简单函数的定义域。
2、过程与方法(方面)
在教学过程中,结合生活中的实例,通过师生互动、生生互动培养学生分析推理、归纳总结和表达问题的能力,在函数概念的构建过程中体会类比、归纳、猜想等数学思想方法。
3、情感、态度与价值观(方面)
让学生充分体验函数概念的形成过程,参与函数定义域的求解过程以及函数的求值过程,使学生感受到数学的抽象美与简洁美。
三、课堂结构设计
为充分调动学生的学习积极性,变被动学习为主动愉快的探究,我使用有效教学的课堂模式,课前学生通过结构化预习,完成问题生成单,课中采用师生互动、小组讨论、学生展写、展讲例题,教师点评的方式完成问题解决单,课后完成问题拓展单,课堂结构包含:
复习旧知,引出课题(约2分钟)创设情境,形成概念(约5分钟)剖析概念(约12分钟)例题分析,巩固知识——小组讨论,展写例题(约8分钟)小组展讲,教师点评(约10分钟)总结反思,知识升华(约2分钟)()布置作业,拓展练习。
四、教学媒体设计
教学中利用投影与黑板相结合的形式,利用投影直观、生动地展示实例,并能增加课堂容量;利用黑板列举本节重要内容,使学生对所学内容有一整体认识,并让学生利用黑板展写、展讲例题,有问题及时发现及时解决。
五、教学过程设计
本节课围绕问题的解决与重难点的突破,设计了下面的教学过程。
整个教学过程按四个环节展开:
首先,在环节——复习旧知,引出课题,先由两个问题导入新课
①初中时函数是如何定义的?
②y=1是函数吗?
[设计意图]:学生通过对这两个问题的思考与讨论,发现利用初中的定义很难回答第②个问题,从而激起他们的好奇心:高中阶段的函数概念会是什么?激发他们学习本节课的强烈愿望和情感,使他们处于积极主动的探究状态,大大提高了课堂效率。
从学生的心理状态与认知规律出发,教学过程自然过渡到第二个环节——函数概念的形成。
由于高中阶段的函数概念本身比较抽象,看不见也摸不着,不易直接给出,因此在本环节中,我主要通过学生能看见能感知的生活中的3个实例出发,由具体到抽象,由特殊到一般,一步步归纳形成函数的概念,此过程我称之为“创设情境,形成概念”。
对于这3个实例,我分别预设一个问题让学生思考与体会。
问题1:从炮弹发射到落地的0-26s时间内,A是否存在某一时间t,在B中没有高度h与之对应?是否有两个或多个高度与之相对应?
问题2:从1979—2001年,A是否存在某一时间t,在B中没有面积S与之对应?是否有两个或多个面积与它相对应吗?
问题3:从19—2001年间,A中是否存在某一时间t,在B中没恩格尔系数与之对应?是否会有两个或多个恩格尔系数与对应?
[设计意图]:通过循序渐进地提问,变教为诱,以诱达思,学生根据问题总结3个实例的各自特点,并综合各自特点,归纳它们的公共特征,着重向学生渗透与对应的观点,这样,再让学生经历由具体到抽象的概括过程,用、对应的语言来描述函数时就显得水到渠成,难点得以突破。
函数的概念既已形成,本节课自然进入了第3个环节——剖析概念,理解概念。
函数概念的理解是本节课的重点也是难点,概念本身比较抽象,学生在理解上可能把握不准确,所以我分两个步骤来进行剖析,由具体到抽象,螺旋上升。
首先,在学生熟读熟背函数概念的基础上,我设计一个学生活动,让学生充分参与,在参与中体会学习的快乐。
我利用多媒体制作一个表格,请学号为01—05的同学填写自己上次的数学考试成绩,并提出3个问题:
问题1:若学号构成A,成绩构成B,对应关系f:上次数学考试成绩,那么由A到B能否构成函数?
问题2:若将问题1中“学号”改为“01—05的学生”,其余不变,那么由A到B能否构成函数?
问题3:若学号04的学生上次考试因病缺考,无成绩,那么对问题1学号与成绩能否构成函数?
[设计意图]:通过层层提问,层层回答,让学生对概念中的把握更为准确,对函数概念的理解更为具体,为总结归纳函数概念的本质特征打下基础。
其次,我通过幻灯片的形式展示几组数集的对应关系,让学生分析讨论哪些对应关系能构成函数,在学生深刻认识到函数是非空数集到非空数集的一对一或多对一的对应关系,并能准确把握概念中的后,再着重强强在这两种对应关系中,何为定义域,何为值域,值域和B有什么关系,强调函数的三要素,得出两函数相等的条件。
至此,本节课的第三个环节已经完成,对于区间的概念,学生通过预习能够理解课堂上不再多讲,仅在多媒体上进行展示,但会在后面例题的使用中指出注意事项。
在本节课的第四个环节——例题分析中,我重点以例题的形式考查函数的有关概念问题,简单函数的定义域问题以及函数的求值问题,至于分段函数、复合函数的求值及定义域问题,将在下节课予以解决,本环节主要通过学生讨论、展写、展讲、学生互评、教师点评的方式完成知识的巩固,让学生成为课堂的主人。
,通过
——总结点评,完善知识体系
——课堂练习,巩固知识掌握
——布置作业,沉淀教学成果
六、教学评价设计
教学是动态生成的过程,课堂上必然会有难以预料的事情发生,具体的教学过程还应根据实际情况加以调整。
,引用赫尔巴特的一句名言结束我的说课,那就是“发挥我们教师的创造性,使教育过程成为一种艺术的事业,使我们不聪明的孩子变的聪明,使我们聪明的孩子变的更聪明”。
谢谢大家!
;
新人教版高一数学必修一章知识点:
【 #高一# 导语】进入到高一阶段,大家的学习压力都是呈直线上升的,因此平时的积累也显得尤为重要, 高一频道为大家整理了《新人教版高一数学必修一章知识点:》希望大家能谨记呦!!
一.知识归纳:
1.的有关概念。
1)(集):某些指定的对象集在一起就成为一个(集).其中每一个对象叫元素
注意:①与的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。
②中的元素具有确定性(a?A和a?A,二者必居其一)、互异性(若a?A,b?A,则a≠b)和无序性({a,b}与{b,a}表示同一个)。
③具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件
2)的表示方法:常用的有列举法、描述法和图文法
3)的分类:有限集,无限集,空集。
4)常用数集:N,Z,Q,R,N
2.子集、交集、并集、补集、空集、全集等概念。
1)子集:若对x∈A都有x∈B,则AB(或AB);
2)真子集:AB且存在x0∈B但x0A;记为AB(或,且)
3)交集:A∩B={x|x∈A且x∈B}
4)并集:A∪B={x|x∈A或x∈B}
5)补集:CUA={x|xA但x∈U}
注意:①?A,若A≠?,则?A;
②若,,则;
③若且,则A=B(等集)
3.弄清与元素、与的关系,掌握有关的术语和符号,特别要注意以下的符号:(1)与、?的区别;(2)与的区别;(3)与的区别。
4.有关子集的几个等价关系
①A∩B=AAB;②A∪B=BAB;③ABCuACuB;
④A∩CuB=空集CuAB;⑤CuA∪B=IAB。
5.交、并集运算的性质
①A∩A=A,A∩?=?,A∩B=B∩A;②A∪A=A,A∪?=A,A∪B=B∪A;
③Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB;
6.有限子集的个数:设A的元素个数是n,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集。
二.例题讲解:
【例1】已知M={x|x=m+,m∈Z},N={x|x=,n∈Z},P={x|x=,p∈Z},则M,N,P满足关系
A)M=NPB)MN=PC)MNPD)NPM
分析一:从判断元素的共性与区别入手。
解答一:对于M:{x|x=,m∈Z};对于N:{x|x=,n∈Z}
对于P:{x|x=,p∈Z},由于3(n-1)+1和+1都表示被3除余1的数,而6m+1表示被6除余1的数,所以MN=P,故选B。
分析二:简单列举中的元素。
解答二:M={…,,…},N={…,,,,…},P={…,,,…},这时不要急于判断三个间的关系,应分析各中不同的元素。
=∈N,∈N,∴MN,又=M,∴MN,
=P,∴NP又∈N,∴PN,故P=N,所以选B。
点评:由于思路二只是停留在最初的归纳设,没有从理论上解决问题,因此提倡思路一,但思路二易人手。
变式:设,,则(B)
A.M=NB.MNC..
解:
当时,2k+1是奇数,k+2是整数,选B
【例2】定义AB={x|x∈A且xB},若A={1,3,5,7},B={2,3,5},则AB的子集个数为
A)1B)2C)3D)4
分析:确定AB子集的个数,首先要确定元素的个数,然后再利用公式:A={a1,a2,…,an}有子集2n个来求解。
解答:∵AB={x|x∈A且xB},∴AB={1,7},有两个元素,故AB的子集共有22个。选D。
变式1:已知非空M{1,2,3,4,5},且若a∈M,则6?a∈M,那么M的个数为
A)5个B)6个C)7个D)8个
变式2:已知{a,b}A{a,b,c,d,e},求A.
解:由已知,中必须含有元素a,b.
A可能是{a,b},{a,b,c},{a,b,d},{a,b,e},{a,b,c,d},{a,b,c,e},{a,b,d,e}.
评析本题A的个数实为{c,d,e}的真子集的个数,所以共有个.
【例3】已知A={x|x2+px+q=0},B={x|x2?4x+r=0},且A∩B={1},A∪B={?2,1,3},求实数p,q,r的值。
解答:∵A∩B={1}∴1∈B∴12?4×1+r=0,r=3.
∴B={x|x2?4x+r=0}={1,3},∵A∪B={?2,1,3},?2B,∴?2∈A
∵A∩B={1}∴1∈A∴方程x2+px+q=0的两根为-2和1,
∴∴
变式:已知A={x|x2+bx+c=0},B={x|x2+mx+6=0},且A∩B={2},A∪B=B,求实数b,c,m的值.
解:∵A∩B={2}∴1∈B∴22+m?2+6=0,m=-5
∴B={x|x2-5x+6=0}={2,3}∵A∪B=B∴
又∵A∩B={2}∴A={2}∴b=-(2+2)=4,c=2×2=4
∴b=-4,c=4,m=-5
【例4】已知A={x|(x-1)(x+1)(x+2)>0},B满足:A∪B={x|x>-2},且A∩B={x|1
分析:先化简A,然后由A∪B和A∩B分别确定数轴上哪些元素属于B,哪些元素不属于B。
解答:A={x|-21}。由A∩B={x|1-2}可知[-1,1]B,而(-∞,-2)∩B=ф。
综合以上各式有B={x|-1≤x≤5}
变式1:若A={x|x3+2x2-8x>0},B={x|x2+ax+b≤0},已知A∪B={x|x>-4},A∩B=Φ,求a,b。(:a=-2,b=0)
点评:在解有关不等式解集一类问题,应注意用数形结合的方法,作出数轴来解之。
变式2:设M={x|x2-2x-3=0},N={x|ax-1=0},若M∩N=N,求所有满足条件的a的。
解答:M={-1,3},∵M∩N=N,∴NM
①当时,ax-1=0无解,∴a=0②
综①②得:所求为{-1,0,}
【例5】已知,函数y=log2(ax2-2x+2)的定义域为Q,若P∩Q≠Φ,求实数a的取值范围。
分析:先将原问题转化为不等式ax2-2x+2>0在有解,再利用参数分离求解。
解答:(1)若,在内有有解
令当时,
所以a>-4,所以a的取值范围是
变式:若关于x的方程有实根,求实数a的取值范围。
解答:
点评:解决含参数问题的题目,一般要进行分类讨论,但并不是所有的问题都要讨论,怎样可以避免讨论是我们思考此类问题的关键。
【同步练习题】
一、选择题(每题4分,共40分)
1、下列四组对象,能构成的是()
A某班所有高个子的学生B的艺术家
C一切很大的书D倒数等于它自身的实数
2、{a,b,c}的真子集共有个()
A7B8C9D10
3、若{1,2}A{1,2,3,4,5}则满足条件的A的个数是()
A.6B.7C.8D.9
4、若U={1,2,3,4},M={1,2},N={2,3},则CU(M∪N)=()
A.{1,2,3}B.{2}C.{1,3,4}D.{4}
5、方程组的解集是()
A.{x=0,y=1}B.{0,1}C.{(0,1)}D.{(x,y)|x=0或y=1}
6、以下六个关系式:,,,,,是空集中,错误的个数是()
A4B3C2D1
7、点的M={(x,y)|xy≥0}是指()
A.象限内的点集B.第三象限内的点集
C.、第三象限内的点集D.不在第二、第四象限内的点集
8、设A=,B=,若AB,则的取值范围是()
ABCD
9、满足条件M=的M的个数是()
A1B2C3D4
10、,,,且,则有()
AB
CD不属于P、Q、R中的任意一个
二、填空题(每题3分,共18分)
11、若,,用列举法表示B
12、A={x|x2+x-6=0},B={x|ax+1=0},若BA,则a=__________
13、设全集U=,A=,CA=,则=,=。
14、,,____________.
15、已知A={x|},若A∩R=,则实数m的取值范围是
16、50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有人.
三、解答题(每题10分,共40分)
17、已知A={x|x2+2x-8=0},B={x|x2-5x+6=0},C={x|x2-mx+m2-19=0},若B∩C≠Φ,A∩C=Φ,求m的值
18、已知二次函数()=,A=,试求的解析式
19、已知,B=,若,且求实数a,b的值。
20、设,,,且A=B,求实数x,y的值
高一数学
高一数学公式和知识点如下:一,有关概念1,的含义:某些指定的对象集在一起就成为一个,其中每一个对象叫元素。2,的中元素的三个特性:元素的确定性; 2.元素的互异性; 3.元素的无序性;说明:(1)对于一个给定的,中的元素是确定的,任何一个对象或者是或者不是这个给定的的元素。(2)任何一个给定的中,任何两个元素都是不同的对象,相同的对象归入一个时,仅算一个元素。(3)中的元素是平等的,没有先后顺序,因此判定两个是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。(4)元素的三个特性使本身具有了确定性和整体性。3,的表示:{ … } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋};用拉丁字母表示:a={我校的篮球队员},b={1,2,3,4,5};的表示方法:列举法与描述法。注意啊:常用数集及其记法:非负整数集(即自然数集) 记作:n。正整数集 n或 n+ 整数集z 有理数集q 实数集r。二,间的基本关系"包含"关系—子集。注意:有两种可能(1)a是b的一部分,;(2)a与b是同一。反之: a不包含于b,或b不包含a,记作ab或ba。"相等"关系(5≥5,且5≤5,则5=5)。实例:设 a={x|x2-1=0} b={-1,1} "元素相同"。结论:对于两个a与b,如果a的任何一个元素都是b的元素,同时,b的任何一个元素都是a的元素,我们就说a等于b,即:a=b。